Laboratory Astrophysics
with a High-Resolution XRS X-ray Microcalorimeter

F. S. Porter, K. R. Boyce, G. V. Brown, R. L. Kelley,
C. K. Stahle, and W. Tillotson
NASA Goddard Space Flight Center, Greenbelt, MD

P. Beiersdorfer, H. Chen, M. May, and D. Thorn
Lawrence Livermore National Laboratory, Livermore, CA

S. M. Kahn
Columbia Astrophysics Laboratory, New York, NY

We have recently deployed an XRS (the X-ray Spectrometer on the Astro-E mission) engineering model microcalorimeter at the electron beam ion traps (EBIT I/II) at Lawrence Livermore National Laboratory [1] [2]. The EBIT I/II can produce well defined astrophysically interesting plasmas for a wide range of plasma conditions. The XRS engineering model was mated with a 32 element XRS x-ray microcalorimeter array and integrated into a laboratory cryostat. The microcalorimeter array has a composite resolution of 8 eV at 1 keV and 11 eV at 6 keV. During the past 1.5 years of operation, we have performed a number of high resolution, broad band observations including: K and L shell Fe with single ionization energies from 1 – 8 keV, Maxwellian distributions of Fe with \(kT = 0.5 – 3 \) keV, non-equilibrium states of Fe with very fine time resolution for \(\eta = 10^9 – 10^{12} \) s cm\(^{-3}\) [3]. The total observation time to date for the campaign is over 100 Ms and the analysis is ongoing. We will present here an overview of the instrument, a few of the preliminary results, and our plans for a permanent, user friendly microcalorimeter facility at the LLNL EBIT I.

References:

Acknowledgments:
Work by the University of California, LLNL was performed under Contract No. W-7405-Eng-48 and supported by NASA SARA P.O. No. S-03958G. Work by NASA/GSFC was supported by NASA SARA.